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Abstract

The interaction regions of colliders invariably include
strong solenoid fields. Where quadrupoles and dipoles are
embedded in the solenoid, the beam dynamics in the com-
bined fields can be complicated to model using the tradi-
tional approach of interleaving slices of the different fields.
The complexity increases if the design trajectory is off-
set from the magnetic axis; this is the case, for example,
in PEP-II. In this paper, we present maps for combined
solenoid, dipole and quadrupole fields that provide a much
simpler alternative to the traditional approach, and show
that the deviation of the design trajectory from the mag-
netic axis can be handle in a straightforward manner. We
illustrate the techniques presented by reference to the PEP-
II interaction region.

INTRODUCTION

Most lattice design codes (MAD [1] is an example) do
not allow for a combined function magnetic element with
superposed solenoidal, dipole, and quadrupole field com-
ponents. As a consequence, modelling the interaction re-
gions of colliders where several dipole and quadrupole
magnets are often contained within the aperture of large
solenoids requires a tedious procedure of interleaving slices
of each field separately. While the resulting particle dy-
namics can still be accurately described, the required num-
ber of slices may be very large, making the effort time con-
suming, prone to implementation errors, and possibly im-
practical if the goal is to fit measured beam data. It is there-
fore desirable to extend these codes to include the transfer
map for the combined function element.

Under the assumption that all the field components of in-
terest (solenoid, quadrupole, and dipole) are invariant along
a preferred direction (say, the solenoid axis) the calculation
of the linear transfer map is easily done by solving an in-
homogeneous linear system of first-order differential equa-
tions with constant coefficients. In this paper we outline
the calculation, reporting some of the relevant formulas,
and show a comparison with the slice model implemented
in the MAD deck currently used for the PEP-II interaction
regions.
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TRANSFER MAP

The relevant Hamiltonian for the calculation of the de-
sired linear transfer map including dispersive effects is

H =
1
2

(
1 +

Pτ

β0

)[(
px +

1
2
ksy

)2

+
(

py −
1
2
ksx

)2
]

+ k0x +
k1(x2 − y2)

2
.

where, following the MAD notationks = B0/Bρ, k0 =
By/Bρ, k1 = (∂By/∂x)/Bρ, are the solenoid, dipole,
quadrupole coefficients respectively, withBρ being the
rigidity. The solenoid fieldB0 points to thez−direction;
the dipole field in the verticaly−direction. Pτ equals
−∆E/(p0c) where∆E is the energy deviation from de-
sign value;p0 is the design momentum.

As the energy deviationPτ is a constant of the motion
this dynamical system is effectively only four dimensional.
The evolution of the time of flight can be determined later
after solving the canonical equations for the transverse
variables. Having denotedζ = (x, px, y, py) the result-
ing linear canonical equations can be written in terms of a

matrix A and vectorb = (0,−k0, 0, 0) as dζ
dz = Aζ + b

The solution with initial conditionsζ(z = 0) = ζ0,
ζ(z) = M(z)ζ0 + r(z) with r =

∫ z

0
dz′M−1(z′)b re-

quires determiningM(z) = exp(Az), which can be done
by diagonalizingA. The expressions forM andr can be
written in relatively simple form upon a suitable grouping
of the variables.

Having introduced the definitionsd = 1 + Pτ/β0, g =
ks/2 andS =
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trix A, ±λ1 and±iλ2 readλ1 =
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S + 2dg2. With the additional definitionsP = S +
k1, P+ = P +2 d g2, P− = P−2 d g2, Q = S− k1, Q+ =
Q + 2 d g2, Q− = Q−2 d g2 we find the independent en-
tries of the matrixM to be
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The remaining entries read:M22 = M11, M23 =
−g2M14, M31 = −M24, M32 = −M14, M41 = g2M14,
M42 = −M13, M44 = M33. Similarly, for the components
of the vectorr we find
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whereQ̂+ = Q+ + 2 k1, Q̂− = Q− + 2 k1.
Having determined the motion in the transverse variables

the advancement in the scaled time of flightτ = ct is found
by the equation
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In linear approximation,τ can then be written as

τ = τ0+M50+M51x0+M52px0+M53y0+M54py0+
zPτ
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While still manageable, the expressions forM5∗ are some-
what lengthy and will be reported elsewhere [3].

If desired, from the above expressions one can also de-
rive the transfer map in the variables describing devia-
tions from a reference orbit. Consider the transverse mo-
tion first. Letζr denote the (on-momentum) reference or-
bit with initial conditionsζ0r. We write a generic and
reference orbit asζ(z) = M(z, Pτ )ζ0 + r(z, Pτ ) and
ζr(z) = M(z, 0)ζr0 +r(z, 0), having emphasized the de-
pendence of the quantitiesM andr on the relative energy
deviationPτ . We subtract the two equations and find for
the transverse deviation variablesZ
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Table 1: PEP-II Tunes as Computed with MAD and AT.

Horizontal Tune Vertical Tune
MAD AT MAD AT

HER 24.5225 24.5284 23.6107 23.6190
LER 38.5055 38.5240 36.6360 36.6216

through first order inPτ , whereZ0 = ζ0 − ζr0. The term
in parenthesis corresponds to theR∗6 entries of the6 × 6
transfer matrixR.

As for the time of flight with respect to the reference
particle we have
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valid through first order inPτ .

APPLICATION TO PEP-II

We have implemented the symplectic integrator for a
combined solenoid-dipole-quadrupole field in the Acceler-
ator Toolbox (AT) developed by A. Terebilo [2].

We applied the integrator to the modelling of the IP re-
gion of PEP-II [4] for both the High (HER) and Low (LER)
energy rings. In the IP region the 1.5 T field from a 4
m long solenoid is superposed on those of dipoles and
quadrupole magnets required to separate and focus the col-
liding beams.

The lattice model for the region as implemented in
the MAD decks currently in use consists of a sequence
of a large number of interleaved slices of solenoid and
combined-function quadrupole/dipole magnets. Besides
the sheer size that makes it cumbersome to manage, a draw-
back of the model is that it is not self-contained. Its imple-
mentation requires a prior evaluation of the reference orbit
with the solenoid switched off. This information is then
used to account for the effect of the solenoid on the vertical
closed orbit, by insertion of suitable vertical kicks (MAD
assumes that solenoids are centered on the reference orbit).

Models for the interaction regions in each of the PEP-II
rings (LER and HER) were constructed as follows.

The region spanned by the solenoid field was divided
into 20 sections, with each of the quadrupole magnets QD1
[4] contained therein divided into three sections, and each
dipole B1 divided into two sections. Each of the solenoid
regions between the quadrupole and dipole magnets was
divided into two. At each end of the solenoid, this gives
a rather crude model for the roll-off of the solenoid field
along the beam trajectory. First approximations for the
strengths of the different field components in each section
were found by taking the integrated field strength of the
section from the MAD model.

The parameters of the components representing the dif-
ferent sections were adjusted to give better agreement
with the dynamics in the MAD model. The solenoid and



Figure 1: LER (top picture) and HER (bottom picture) ver-
tical beam size as computed with MAD (blue line) and AT
(red line).

quadrupole strengths were adjusted to minimize the devi-
ation of the transverse terms of the transfer matrix, first
from the entrance of the solenoid to the IP, then from the
entrance of the solenoid to the exit of the solenoid. The
dipole strengths were adjusted to match the orbit in MAD.
For both the LER and HER, adjustments of no more than
a few percent were needed from the “nominal” integrated
values to give optimum fits to the orbit and the transfer ma-
trices.

No attempt was made to fit the energy or time of flight
components of the transfer matrices: these were allowed
to take the values arrived at by fitting only the orbit and
the components of the transfer matrices relating just to the
transverse co-ordinates.

The models of the interaction regions based on the “com-
bined” elements were then used in full lattice models in AT,
with the definition of components outside the interaction
region taken from the MAD decks. This allows an analysis
of the closed orbit, dispersion, beam sizes and tunes for the
models using combined elements in the interaction region.

The lattice tunes are shown in Table 1. The transfer ma-
trices across the solenoid (not reported here) calculated us-
ing the two methods are within a fraction of percent for the
transverse degrees of freedom and few percent for the en-
tries relative to the time of flight. Selected plots of disper-
sions, and beam sizes are shown in figures 1-2. The beam
sizes are calculated using the nominal horizontal emittance,
a vertical emittance that is 1% of the horizontal, and the

Figure 2: LER: (top picture) and HER (bottom picture) ver-
tical dispersion as computed with MAD (blue line) and AT
(red line).

nominal energy spread. There is good agreement for the
transfer matrices, orbits and horizontal dispersion between
the detailed MAD model using the sliced solenoid, and the
AT model using combined elements. In the LER, there is
some residual vertical dispersion; there is also some dis-
crepancy in the beam tilts between the two models. There
are indications that the poor fits in the LER vertical disper-
sion and in the HER and LER beam tilts are the result of an
inaccurate modelling of the solenoid field, particularly at
the ends of the solenoid. We have found it possible, by trial
and error, to improve the match in specific parameters by
adjusting the strengths of the solenoid components at the
ends of the solenoid. In particular, we feel that modelling
the roll-off of the solenoid field in just two ”steps” is in-
sufficient to achieve a good agreement between the AT and
the MAD models. In future works we plan to investigate
the possible use of orbit response matrix data for calibrat-
ing the IP magnet parameters.
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